Supporting Information

Enantioselective Synthesis of Fluorinated α -Amino Acids and Derivatives in Combination with Ring-Closing Metathesis: Intra-molecular π -Stacking Interactions as a Source of Stereocontrol

General Methods. For general details concerning the treatment of solvents and reagents, and the analytical methods, see reference 4a.

General Procedure for C=N bond Reduction in Sulfinyl N-Arylimines 3. To a stirred solution of β-iminosulfoxide 3 in the appropriate solvent (conc. ca. 1M) and temperature, an excess of reducing agent (Bu₄NBH₄) was added portion-wise (Table 1). The mixture was then stirred until total disappearance of the starting material 3 (TLC analysis). After quenching of the reaction with saturated aqueous NH₄Cl, the organic layer was separated and the aqueous phases extracted with dichloromethane. The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo* to furnish a crude mixture of diastereomers 4. Medium Pressure Liquid Chromatography (MPLC) or Flash Chromatography (FC) [n-hexanes/ethyl acetate (3:1), unless otherwise stated] provided the diastereomerically pure sulfinyl N-aryl amines 4.

(-)-(2*S*,*S*_S)-3,3,3-Trifluoro-*N*-(*p*-methoxyphenyl)-2-aminopropyl-*p*-tolylsulfoxide (*syn*-4a). Crude mixture of *syn-anti* (88:12) diastereomers was obtained (>98%). MPLC gave the major *syn* diastereomer (*syn*-4a) as a white solid: mp 183-185 °C; $[\alpha]^{25}_{D}$ - 129.8 (*c* 0.65, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 2.41 (s, 3H), 3.15 (dd, J_1 = 13.9 and J_2 = 9.0, 1H), 3.19 (d, J = 13.9 and J_2 = 5.4, 1H), 3.68 (d, J = 9.0, 1H), 3.77 (s, 3H), 4.19 (m, 1H), 6.59 (d, J = 8.2, 2H), 6.78 (d, J = 8.2, 2H), 7.28 (d, J = 8.0, 2H), 7.45 (d, J = 8.0, 2H); ¹³C NMR (62.8 MHz, CDCl₃) 21.4, 54.1 (q, $^2J_{CF}$ = 30.1), 55.6, 57.9, 115.2, 116.5, 123.9, 125.5 (q, $^1J_{CF}$ = 280.1), 129.8, 139.4, 140.4, 143.2, 153.8; ¹⁹F NMR (235 MHz, CDCl₃) -75.7 (J_{HF} = 6.9; 3F). Anal. Calcd. for C₁₇H₁₈NO₂SF₃: C, 57.14; H, 5.04; N, 3.92; S, 8.96. Found; C, 57.23; H, 4.87; N, 3.98; S, 9.02.

(-)- $(2S,S_S)$ -3,3,3-Trifluoro-N-(p-methoxyphenyl)-2-aminopropyl-1-(1-naphtyl)

sulfoxide (*syn*-4b). Crude mixture of *syn-anti* (99:1) diastereomers was obtained (>98%). MPLC gave the major *syn* diastereomer as a white solid: mp 149-150 °C; [α]²⁵_D - 399.8 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.05 (dd, J_1 = 13.9 and J_2 = 8.2, 1H), 3.39 (dd, J_1 = 13.9 and J_2 = 4.8, 1H), 3.52 (d, J = 9.0, 1H), 3.65 (s, 3H), 4.37 (m, 1H), 6.38 (d, J = 8.8, 2H), 6.63 (d, J = 8.8, 2H), 7.34-7.91 (m, 7H); ¹³C NMR (62.8 MHz, CDCl₃) 51.8 (q, ² J_{CF} = 30.3), 54.7, 55.6, 114.6, 114.9, 120.9, 123.0, 123.2, 125.6, 125.9 (q, ¹ J_{CF} = 281.4), 126.7, 127.5, 128.3, 129.1, 131.5, 133.3, 137.9, 138.6, 153.2; ¹⁹F NMR (235 MHz, CDCl₃) –75.7 (d, J = 6.2, 3F). HRMS calc. for C₂₀H₁₈NO₂SF₃, 393.1010, found 393.0993. Anal. Calcd. for C₂₀H₁₈NO₂SF₃: C, 61.06; H, 4.58; N, 3.56; S, 8.15. Found; C, 60.98; H, 4.52; N, 3.48; S, 8.19.

(-)- $(2S,S_S)$ -3,3,3-Trifluoro-N-(p-methoxyphenyl)-2-aminopropyl-1-(2-naphtyl)

sulfoxide (*syn*-4c). Crude mixture of *syn-anti* (93:7) diastereomers was obtained (>98%). *Flash* chromatography on silica gel (R_f =0.45) gave *syn*-4c as a white solid: mp 159-160 °C; $[\alpha]_D^{25}$ – 95.3 (c 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 2.90 (dd, J_1 = 13.2 and J_2 = 11.1, 1H), 3.15 (dd, J_1 = 13.2 and J_2 = 3, 1H), 3.69 (s, 3H), 4.37 (s, 1H), 6.73-8.11 (m, 11H); ¹³C NMR (75 MHz, CDCl₃) 50.0 (q, ³ J_{CF} = 30.0), 55.6, 57.3, 114.8, 114.8, 116.4, 116.5, 119.4, 124.8, 127.5, 128.1, 128.1, 128.5, 129.9, 132.9, 134.6, 139.4, 140.1, 153.8; ¹⁹F NMR (235 MHz, CDCl₃) –76.03 (d, J_{FH} = 5.8, 3F). HRMS calc. for $C_{20}H_{18}NO_2SF_3$ 393.1010, found 393.1019. Anal. Calcd. for $C_{20}H_{18}NO_2SF_3$: C, 61.06; H, 4.58; N, 3.56. Found; C, 61.28; H, 4.78; N, 3.65.

(-)- $(2S,S_S)$ -3-Chloro-3,3-difluoro-N-(p-methoxyphenyl)-2-aminopropyl-1-(1-

naphtyl)sulfoxide (*syn*-4d). Crude mixture of *syn-anti* (99:1) diastereomers was obtained (>98%). MPLC gave the major *syn* diastereomer as a white solid: mp. 145-147 °C; $[α]^{25}_D$ - 239.7 (*c* 0.2, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.05 (dd, J_1 = 13.9 and J_2 = 8.5, 1H), 3.46 (d, J = 9.3, 1H), 3.52 (dd, J_1 = 13.9 and J_2 = 4.3, 1H), 3.70 (s, 3H), 4.46 (m, 1H), 6.42 (d, J = 8.8, 2H), 6.66 (d, J = 8.8, 2H), 7.37-7.96 (m, 7H); ¹³C NMR (62.8 MHz, CDCl₃) 55.6, 55.8, 56.8 (t, ${}^2J_{CF}$ = 26.0), 114.5, 115.1, 121.0, 123.3, 125.3, 125.5, 126.7, 127.5, 128.3, 129.1, 130.1 (t, ${}^1J_{CF}$ = 290.0), 131.5, 133.3, 134.9, 137.8, 138.6, 153.2; ¹⁹F NMR (235 MHz, CDCl₃) -59.9 (d, J_{FH} = 4.9, 1F), -59.9 (d, J_{FH} = 4.9, 1F). HRMS calc. for C₂₀H₁₈NO₂SF₂Cl, 409.0714,

found 409.0718. Anal. Calcd. for $C_{20}H_{18}NO_2SF_2Cl$: C, 58.68; H, 4.40; N, 3.42; S, 7.82. Found; C, 58.91; H, 4.32; N, 3.52; S, 7.93.

(-)- $(2S,S_S)$ -3,3-Difluoro-N-(p-methoxyphenyl)-2-aminopropyl-1-(1-naphtyl)

sulfoxide (*syn*-4e). Crude mixture of *syn-anti* (91:9) diastereomers was obtained (>98%). *Flash* chromatography on silica gel gave the major *syn* diastereomer as a white solid: mp 121-122 °C; $[α]^{23}_D$ –440.0 (*c* 0.99, CHCl₃); 1H NMR (250 MHz, CDCl₃) 3.07 (dd, J_1 = 14.0 and J_2 = 5.7, 1H), 3.44 (dd, J_1 = 14.0 and J_2 = 6.1, 1H), 3.73 (m, 3H), 4.20 (m, 1H), 6.10 (t, J = 55.7, 1H), 6.43 (d, J = 7.2, 2H), 6.68 (d, J = 7.2, 2H), 7.59 (m, 3H), 7.84 (d, J = 7.3, 1H), 7.96 (m, 2H), 8.11 (d, J = 6.8, 1H); 13 C NMR (62.4 MHz, CDCl₃) 52.0 (t, $^2J_{CF}$ = 22.7), 53.0, 55.7, 114.9, 114.9 (t, $^1J_{CF}$ = 246), 115.4, 121.3,123.2, 125.6, 126.8, 127.6, 128.6, 129.1, 131.5, 133.5, 138.4, 138.7, 153.3; 19 F NMR (235 MHz, CDCl₃) -127.6 (ddd, J_{FF} = 283.0, $^1J_{FH}$ = 55.7, $^2J_{FH}$ = 9.6, 1F), -131.3 (ddd, J_{FF} = 283.0, 55.7 and 15.4, 1F); EI-MS 375 [M]⁺. Anal. Calcd. for C₂₀H₁₉NO₂SF₂: C, 64.00; H, 5.06; N, 3.73. Found; C, 64.23; H, 4.91; N, 3.62.

(-)- $(2S,S_S)$ -3,3,3-Trifluoro-N-(o-methoxyphenyl)-2-aminopropyl-1-(1-naphtyl)

sulfoxide (*syn-4f*). Crude mixture of *syn-anti* (97:3) diastereomers was obtained (>98%). *Flash* chromatography [*n*-hexanes-EtOAc (2:1)] on silica gel (R_{f} =0.45) gave the major *syn* diastereomer as a white solid: mp 144-146 °C; [α]²⁵_D –385.5 (*c* 1.01, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.15 (dd, J_{1} = 13.2 and J_{2} = 4.3, 1H), 3.52 (s, 3H), 3.53 (dd, J_{1} = 13.3 and J_{2} = 9.6, 1H), 3.97 (br d, J = 10.4, 1H), 4.48-4.51 (m, 1H), 6.64 (m, 4H), 7.20-8.87 (m, 7H); ¹³C NMR (62.8 MHz, CDCl₃) 48.5 (q, ${}^{3}J_{CF}$ = 29.5), 54.1, 54.8, 109.3, 110.5, 118.2, 120.8, 123.1, 125.5 (q, ${}^{1}J_{CF}$ = 284.3), 127.6, 128.2, 128.5, 128.9, 131.1, 133.2, 134.0, 137.1, 146.3; ¹⁹F NMR (235 MHz, CDCl₃) –75.6 (d, J_{FH} = 6.5, 3F). HRMS calc. for C₂₀H₁₈NO₂SF₃ 393.1010, found 393.1019. Anal. Calcd. for C₂₀H₁₈NO₂SF₃: C, 61.06; H, 4.58; N, 3.56. Found; C, 60.89; H, 4.53; N, 3.49.

(+)- $(2S,S_S)$ -3,3,3-Trifluoro-N-(p-fluorophenyl)-2-aminopropyl-1-(1-naphtyl)

sulfoxide (*syn*-4g). Crude mixture of *syn*-anti (98:2) diastereomers was obtained (>98%). *Flash* chromatography [*n*-hexanes-EtOAc (4:1)] on silica gel (R_f =0.45) gave the major *syn* diastereomer as a white solid: mp 196-198 °C; [α]²⁵_D +5.74 (c 1.18, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.04 (dd, J_1 = 8.5 and J_2 = 7.0, 1H), 3.44 (dd, J_1 = 7.0 and J_2 = 4.3, 1H), 4.42 (m, 1H), 6.33-7.94 (m, 11H); ¹³C NMR (62.8 MHz, CDCl₃) 51.4 (q, ³ J_{CF} = 31.1), 54.3, 54.8,

114.7, 114.8, 115.5, 120.8, 123.3, 125.6 (q, ${}^{1}J_{CF} = 284.3$), 126.8, 127.4, 128.2, 128.5, 129.2, 133.4, 137.6, 140.8, 158.7; ${}^{19}F$ NMR (235 MHz, CDCl₃) -75.8 (d, $J_{FH} = 6.1$, 3F), -125.8 (m, 1F). HRMS calc. for $C_{19}H_{15}NOSF_{4}$, 382.0888 found 382.0888.

$(-)-(2S,S_S)-3,3,3-Trifluoro-N-(1-naphtyl)-2-aminopropyl-1-(1-naphtyl) sulfoxide$

(*syn-4h*). Crude mixture of *syn-anti* (99:1) diastereomers was obtained (>98%). *Flash* chromatography on silica gel (R_{f} =0.45) gave the major *syn* diastereomer as a white solid: mp 195-196 °C; [α]²⁵_D –283.3 (c 0.99, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.26 (dd, J_{1} = 8.0 and J_{2} = 7.0, 1H), 3.68 (dd, J_{1} = 7.0 and J_{2} = 4.4, 1H), 4.17 (d, J = 8.0, 1H) 4.79 (m, 1H), 6.68-7.83 (m, 14H); ¹³C NMR (62.8 MHz, CDCl₃) 49.8 (q, ³ J_{CF} = 31.1), 54.3 ,105.9, 119.2, 119.3, 120.6, 123.2, 124.9, 125.1, 125.7, 126.0 126.6, 127.5, 127.6, 128.0, 129.3, 131.1, 133.3, 134.1, 134.1, 136.8, 139.6; ¹⁹F NMR (235 MHz, CDCl₃) –75.2 (d, J_{FH} = 6.3, 3F). HRMS calc. for C₂₃H₁₈NOSF₃ 413.1061, found 413.1061.

(-)- $(2S,S_S)$ -3,3-Difluoro-N-(p-methoxyphenyl)-2-amino-5-hexenyl-1-(1-naphtyl)

sulfoxide (*syn-4j*). Crude mixture of *syn-anti* (99:1) diastereomers was obtained (>98%). *Flash* chromatography [*n*-hexane-EtOAc (2:1)] on silica gel ($R_{\overline{r}}$ =0.50) gave the major *syn* diastereomer as a white solid: m.p. 150-151 °C; [α]²⁵ _D: -491.5 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 2.78-2.89 (m, 2H), 2.96 (dd, J_1 = 14.0, J_2 = 4.0, 1H), 3.50 (dd, J_1 = 14.0, J_2 = 7.0, 2H), 3.76 (s, 3H), 4.34-4.40 (m, 1H), 5.17-5.28 (m, 2H), 5.82-5.89 (m, 1H), 6.61 (d, J = 9.0, 2H), 6.78 (d, J = 9.0, 2H), 7.53-8.10 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) 39.2 (t, $^2J_{CF}$ = 24.0), 52.8 (dd, $^2J_{1CF}$ = 30.1, $^2J_{2CF}$ = 24.3), 56.1, 115.3, 115.6, 121.8, 123.1, 124.4 (t, $^1J_{CF}$ = 246.0), 126.1, 127.1, 127.8, 128.9, 129.4, 131.6, 133.8, 139.1, 140.1, 153.4; ¹⁹F NMR (235 MHz, CDCl₃) -103.7 (m, J_{FF} = 250.1, 1F), -111.4 (m, J_{FF} = 250.1, 1F). HRMS calc. for $C_{23}H_{23}F_2NO_2S$ 415.1418, found 415.1428.

General Procedure for the Synthesis of N-Cbz protected β -aminosulfoxides 5. First step: To a solution of N-PMP β -aminosulfoxide 4 (0.5 mmol) in acetonitrile (11 mL) at 0 °C was added dropwise a solution of CAN (2.5 mmol) in water (8 mL). The mixture was stirred for 30 minutes at the same temperature, then aqueous 5% NaHCO₃ was added until pH 6 was reached. Na₂SO₃ was added portion-wise until a brown slurry was formed. The mixture was extracted with ethyl acetate (5 x 30 mL) and the organics were dried (Na₂SO₄). After filtration

and evaporation of the solvents a solid residue was obtained. FC [Et₃N 1% in ethyl acetate/n-hexanes (3:2)] gave the N-unsubstituted β -aminosulfoxides syn-4 (R^1 =H).

Second step: To a solution of a *N*-unsubstituted β-aminosulfoxide (6.0 mmol) in dioxane (7.5 mL) at room temperature were added 1.5 mL of a 50% K₂CO₃ aqueous solution, followed by benzyl chloroformate (7.1 mmol). The mixture was stirred for 2 hours at the same temperature and a white solid was formed. Then, the organic solvent was evaporated and the residue was diluted with water (20 mL) and extracted with CH₂Cl₂ (3 x 20 mL). Finally, the organics were washed with brine and after drying (MgSO₄), filtration and evaporation of the solvents a solid residue was obtained. FC [*n*-hexanes/ethyl acetate (7:3)] afforded compounds 5.

(-)-(2S,S_S)-2-(N-Benzyloxycarbonyl)amino-3,3,3-trifluoropropyl-1-(1-naphthyl)

sulfoxide (*syn-5b*). FC gave a white solid (95%): mp 150-152 °C; $[\alpha]^{25}_{D}$ –234.9 (*c* 1.0, CH₃COCH₃); ¹H NMR (250 MHz, CDCl₃) 2.99 (dd, $J_1 = 14.2$, $J_2 = 9.9$; 1H), 3.38 (d, $J_1 = 14.2$ and $J_2 = 3.7$, 1H), 4.97 (s, 2H), 4.81-5.0 (m, 1H), 5.14 (br d, J = 9.7, 1H), 7.20-8.03 (m, 12H); ¹³C NMR (62.8 MHz, CDCl₃) 48.2 (q, ² $J_{CF} = 32.1$), 53.2, 67.5, 120.9, 123.6, 124.2 (q, ¹ $J_{CF} = 280.7$), 125.6, 126.9, 127.8, 128.1, 128.2, 128.3, 128.5, 129.3, 130.9, 133.4, 135.5, 137.4, 155.0; ¹⁹F NMR (235 MHz, CDCl₃) –76.5 (d, $J_{HF} = 7.4$, 3F). HRMS calc. (M⁺+1) C₂₁H₁₉NO₃SF₃, 422.1038, found 422.1052. Anal. Calcd. for C₂₁H₁₈NO₃SF₃: C, 59.85; H, 4.27; N, 3.32. Found; C, 59.67; H, 4.34; N, 3.16.

(-)-(2S,S_S)-2-(N-Benzyloxycarbonyl)amino-3-chloro-3,3-difluoropropyl-1-(1-

naphthyl)sulfoxide (*syn*-5d). FC gave a white solid (99%): mp 140-142 °C; [α]²⁵_D –234.3 (c 0.2, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 1.63 (s, 1H), 3.00 (dd, J_1 = 14.2 and J_2 = 9.7, 1H), 3.51 (d, J = 14.2 and J_2 = 2.9, 1H), 4.98-5.10 (m, 1H), 5.02 (s, 2H), 7.28-7.92 (m, 12H); ¹³C NMR (62.8 MHz, CDCl₃) 53.3 (t, ${}^2J_{CF}$ = 27.8), 54.3, 67.5, 121.0, 123.7, 125.6, 126.9, 127.7, 128.1, 128.2, 128.3, 128.5, 129.3, 131.1 (t, ${}^1J_{CF}$ = 279.0), 131.7, 133.4, 135.6, 137.5, 138.9, 155.0; ¹⁹F NMR (235 MHz, CDCl₃) –61.2 (dd, J_{FF} = 163.1 and J_{FH} = 7.7, 1F) and –62.3 (dd, J_{FF} = 163.1 and J_{FH} = 7.7, 1F). HRMS calc. (M⁺) C₂₁H₁₈NO₃SF₂Cl, 437.0634, found 437.0644. Anal. Calcd. for C₂₁H₁₈NO₃SF₂Cl: C, 57.66; H, 4.12; N, 3.20; S, 7.32. Found; C, 57.47; H, 4.09; N, 3.11; S, 7.20.

(-)-(2S,S_S)-2-(N-Benxzyloxycarbonyl)amino-3,3-difluoropropyl-1-(1-naphtyl)

sulfoxide (*syn*-5e). FC on silica gel [*n*-hexanes-EtOAc (3:2)] gave a white solid (81%): mp 158-159 °C; [α]²³_D –304.1 (*c* 0.60, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 3.07 (dd, J_1 = 14.3 and J_2 = 8.8, 1H), 3.42 (dd, J_1 = 14.3 and J_2 = 4.4, 1H), 4.55 (m, 1H), 5.02 (s, 2H), 5.45 (br s, 1H), 6.00 (t, J = 56.1, 1H), 7.33 (m, 4H), 7.58 (m, 3H), 7.89 (m, 3H), 8.10 (d, J = 6.8, 1H), ¹³C NMR (62.4 MHz, CDCl₃) 49.4 (t, ² J_{CF} = 23.7), 52.5, 67.3, 113.9, (t, ¹ J_{CF} = 246.7), 121.2, 123.4, 125.6, 126.9, 127.7, 128.1, 128.3, 128.50, 128.54, 129.2, 131.7, 133.6, 135.9, 138.3, 155.5; ¹⁹F NMR (235 MHz, CDCl₃) -126.1 (ddd, J_{FF} = 284.1, ¹ J_{FH} = 56.1 and ² J_{FH} = 8.0 Hz, 1F), -131.3 (ddd, J_{FF} = 284.1, ¹ J_{FH} = 56.1 and ² J_{FH} = 18.1, 1F); EIMS 404 [M+1]⁺. Anal. Calcd. for C₂₁H₁₉NO₃SF₂: C, 65.50; H, 4.71; N, 3.47; S, 7.94. Found; C, 65.34; H, 4.88; N, 3.60; S, 7.89.

$\hbox{(-)-($\it 2R,S$_S$)-2-($\it N$-Benzyloxycarbonyl)} amino-3,3-difluoropropyl-1-(1-naphtyl) \\$

sulfoxide (*anti*-5e). FC [*n*-hexanes-EtOAc (3:2)] on silica gel (R_F =0.45) gave a white solid (6%): mp 144-146 °C; [α]²⁵_D-274.9 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 1.82 (br s, 1H), 3.00 (dd, J_1 = 13.5 and J_2 = 3.4, 1H), 3.38 (dd, J_1 = 13.5 and J_2 = 9.0, 1H), 4.42 (m, 1H), 5.13 (d, J = 12.0, 1H), 5.17 (d, J = 12.0, 1H), 6.06 (dt, J_{FF} = 53.1, J_{FH} = 3.0), 7.31-7.99 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) 50.2 (t, ² J_{CF} = 27.0), 52.8, 67.3, 113.9 (t, ¹ J_{CF} = 244.3), 121.0, 122.9, 125.6, 126.8, 127.6, 128.1, 128.3, 128.3, 129.1, 131.7, 133.4, 135.8, 138.5; ¹⁹F NMR (235 MHz, CDCl₃) -128.9 (ddd, J_{FF} = 283.4, ¹ J_{FH} = 73.5 and ² J_{FH} = 17.6), -125.0 (ddd, J_{FF} = 283.4, ¹ J_{FH} = 54.9 and ² J_{FH} = 8.2). HRMS calc. C₂₁H₁₉NO₃SF₂ 403.1053, found 403.1065.

(-)- $(2S,S_S)$ -2-(N-Benzyloxycarbonyl)amino-3,3-difluoro-5-hexenyl-1-(1-naphtyl)

sulfoxide (*syn-*5j). FC [*n*-hexane-EtOAc (3:2)] on silica gel (R_f =0.50) gave a white solid (76%): m.p. 127-129 °C; [α]²⁵ _D: - 191.2 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 2.50-2.58 (m, 2H), 2.97 (dd, J_1 = 14.0, J_2 = 9.6, 1H), 3.42 (dd, J_1 = 14.0, J_2 = 3.5, 1H), 4.58-4.63 (m, 1H), 4.92-5.08 (m, 4H), 5.51-5.53 (m, 1H), 5.54-5.72 (m, 1H), 7.21 (s, 5H), 7.44-8.00 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) 38.2 (t, ² J_{CF} = 24.0), 50.2 (dd, ² J_{1CF} = 32.0, ² J_{2CF} = 25.0), 54.6, 67.1, 121.0, 122.2 (t, ¹ J_{CF} = 246.0), 121.3, 123.5, 125.4, 126.6, 127.4, 127.7, 127.9, 128.1, 128.4, 129.1, 131.4, 133.3, 135.9, 138.4, 155.5; ¹⁹F NMR (235 MHz, CDCl₃) -105.1

(ddt, $J_{FF} = 247.2$, $J_1 = 20.2$, $J_2 = 16.5$, 1F), -110.2 (dq, $J_{FF} = 247.2$, J = 19.0, 1F). HRMS calc. for $C_{24}H_{23}F_2NO_3S$ 443.1367, found 443.1366.

"Non-Oxidative" Pummerer Rearrangement. Synthesis of *N*-Cbz amino alcohols (*R*)-6. To a solution of *N*-Cbz derivative 5 (2.8 mmol) and *sym*-collidine (8.5 mmol) in acetonitrile (56 mL) at 0 °C and under argon atmosphere was added dropwise trifluoroacetic anhydride (14.0 mmol), and the mixture was stirred for 5 minutes at the same temperature. After complete consumption of the starting material (TLC) a 10% K₂CO₃ aqueous solution was added until neutral pH was reached. Then an excess of NaBH₄ (ca. 14.0 mmol) was added portion-wise and the reaction was allowed to reach room temperature. After 15 minutes (TLC analysis) the reaction was quenched with saturated solution of NH₄Cl and extracted with ethyl acetate (3 x 25 mL). The organics were washed successively with HCl 1*N* (2 x 15 mL) and then aqueous 5% NaHCO₃ (2 x 15 mL). After drying (Na₂SO₄), filtration and removal of solvents *in vacuo*, FC [*n*-hexanes-EtOAc (3:1)] gave the pure amino alcohol 6.

(-)-(2*R*)-2-(*N*-Benzyloxycarbonyl)amino-3,3,3-trifluoropropanol [(*R*)-6a]. FC gave a white solid (75%): mp 84-86 °C; $[\alpha]^{25}_D$ –12.0 (*c* 1.0, CHCl₃); for spectroscopical ¹H and ¹⁹F NMR data, see reference 10b. ¹³C NMR (62.8 MHz, CDCl₃) 53.7 (q, ² J_{CF} = 29.3), 59.4, 67.6, 121.4 (q, ¹ J_{CF} = 280.6), 128.2, 128.4, 128.6, 135.6; 156.2. HRMS calc. for (M⁺) C₁₁H₁₂NO₃F₃, 263.0769, found 263.0764.

(-)-(2*R*)-2-(*N*-Benzyloxycarbonyl)amino-3-chloro-3,3-difluoropropanol [(*R*)-6b]. FC gave a white solid (70%): mp 65-67 °C; $[\alpha]^{25}_D$ –8.7 (*c* 0.4; CHCl₃); ¹H NMR (250 MHz, CDCl₃) 2.09 (s, 1H), 3.77 (d, J = 4.8, 2H), 4.34 (m, 1H), 5.03 (s, 2H), 5.67 (d, J = 9.7, 1H), 7.22-7.29 (s, 5H); ¹³C NMR (62.8 MHz, CDCl₃) 59.0 (t, ² $J_{CF} = 25.0$), 59.9, 67.6, 128.1, 128.3 (t, ¹ $J_{CF} = 295.5$), 128.4, 128.6, 135.6, 156.3; ¹⁹F NMR (235 MHz, CDCl₃) –59.7 (dd, $J_{FF} = 167.3$ and $J_{FH} = 9.1$, 1F); –60.3 (dd, $J_{FF} = 167.3$ and $J_{FH} = 9.3$, 1F). Anal. Calcd. for C₁₁H₁₂NO₃F₂Cl: C, 47.31; H, 4.30; N, 5.01. Found; C, 47.51; H, 4.32; N, 5.12.

(-)-(2*R*)-2-(*N*-Benzyloxycarbonyl)amino-3,3-difluoropropanol [(*R*)-6c]. FC on silica gel [*n*-hexanes-EtOAc (3:2)] gave a white solid (90%): mp 54-56 °C; $[\alpha]^{23}_D$ -6.1 (*c* 0.80, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 2.23 (s, 1H), 3.70 (dd, J_1 = 10.7 and J_2 = 4.8, 1H), 3.90 (dd, J_1 = 10.7 and J_2 = 3.6, 1H), 4.03 (m, 1H), 5.12 (s, 2H), 5.38 (d, J = 8.0, 1H), 5.93 (dt, J_{FH}

= 55.5 and J_{FH} =2.9, 1H), 7.34 (m, 5H), ¹³C NMR (62.4 MHz, CDCl₃) 54.1 (t, ² J_{CF} = 22.1), 59.7, 67.5, 114.6 (t, ¹ J_{CF} = 244.5), 128.2, 128.4, 128.6, 136.0, 156.4; ¹⁹F NMR (235 MHz, CDCl₃) -128.8 (dd, J_{1} = 55.5 and J_{2} = 13.7, 2F); EI-MS 245 [M]⁺. Anal. Calcd. for C₁₁H₁₃NO₃F₂: C, 53.88; H, 5.30; N, 5.71. Found; C, 54.02; H, 5.25; N, 5.83.

(-)-(2*R*)-2-(*N*-Benzyloxycarbonyl)amino-3,3-difluoro-5-hexen-1-ol [(*R*)-6d]. FC [*n*-hexane-EtOAc (3:2)] on silica gel (R_f =0.50) gave a white solid (88%): m.p. 75-77 °C; [α]²⁵ _D: -4.66 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 2.10 (br s, 1H), 2.53-2.70 (m, 2H), 3.74 (dd, J_1 = 11.9, J_2 = 3.5, 1H), 3.84 (dd, J_1 = 11.9, J_2 = 4.6, 1H), 3.97-4.06 (m, 1H), 5.11-5.18 (m, 2H), 5.05 (s, 2H), 5.37 (d, J = 9.5, 1H), 5.69-5.75 (m, 1H), 7.28 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) 38.8 (t, ${}^2J_{CF}$ = 24.0), 55.2 (dd, ${}^2J_{1CF}$ = 29.0, ${}^2J_{2CF}$ = 23.0), 59.7 (t, ${}^3J_{CF}$ = 3.9), 67.2, 120.8, 122.9 (t, ${}^1J_{CF}$ = 245.0), 128.0, 128.2, 128.4, 135.9, 156.5; ¹⁹F NMR (235 MHz, CDCl₃) -105.8 (ddt, J_{FF} = 249.0, J_1 = 18.0, J_2 = 8.2, 1F), -107.5 (dq, J_{FF} = 249.0, J = 16.7, 1F). HRMS calc. for C₁₄H₁₇F₂NO₃ 285.1177, found 285.1176.

Oxidation of amino alcohols 6. To a solution of *N*-Cbz amino alcohol 6 (1.05 mmol) in 5 mL of a mixture of acetone and water (3:2) at room temperature was added solid NaIO₄ (340 mg; 1.60 mmol) followed by RuO_{2-x}H₂O (30 mg; 0.22 mmol). The mixture was stirred for 1 hour and then 5 mL of *i*-PrOH were added. The solid was filtered through a *Celite* column and washed with acetone. After evaporation of the solvents *in vacuo* the residue was dissolved in 5 mL of ethyl acetate and extracted with a 5% aqueous solution of NaHCO₃ (3 x 5 mL). The aqueous phases were acidified with HCl 1*N*. The white slurry was then extracted with ethyl acetate (3 x 10 mL). The organics were dried (MgSO₄), filtered and concentrated *in vacuo* to furnish an orange solid. FC (MeOH 100%) in silica gel gave the *N*-Cbz-α-amino acid (*R*)-7.

(-)-(2*R*)-*N*-Benzyloxycarbonyl-3,3,3-trifluoroalanine [(*R*)-7a]. FC gave a white solid (70%): mp 100-102 °C; $[\alpha]^{25}_D$ –6.0 (*c* 0.5, MeOH); for spectroscopical ¹H and ¹⁹F NMR data, see reference 10b. ¹³C NMR (62.8 MHz, CD₃OD) 57.1 (q, $^2J_{CF}$ = 31.4), 68.2, 124.6 (q, $^1J_{CF}$ = 279.3), 128.9, 129.1, 129.5, 137.8, 158.3, 167.2. HRMS calc. for (M⁺) C₁₁H₁₀NO₄F₃, 277.0562, found 277.0562.

(-)-(2R)-N-Benzyloxycarbonyl-3-chloro-3,3-difluoroalanine [(R)-7b]. FC gave a white solid (65%): mp 90-92 °C; $[\alpha]^{25}_D$ -1.1 (c 0.6, MeOH); ¹H NMR (250 MHz, CD₃OD)

4.89 (s, 2H), 4.98 (t, $J_{HF} = 8.2$, 1H), 5.07 (br s, 1H), 7.12-7.23 (m, 5H); ¹³C NMR (62.8 MHz, CD₃OD) 62.3 (t, ${}^2J_{CF} = 27.2$), 68.3, 128.2 (t, ${}^1J_{CF} = 295.4$), 128.9, 129.2, 129.5, 137.8, 158.2, 167.4; ¹⁹F NMR (235 MHz, CD₃OD) –58.9 (dd, $J_{FF} = 160.6$ and $J_{FH} = 6.0$, 1F), –59.7 (dd, $J_{FF} = 160.6$ and $J_{F-H} = 10.0$, 1F). Anal. Calcd. for C₁₁H₁₀NO₄F₂Cl: C, 45.05; H, 3.41; N, 4.78. Found; C, 44.92; H, 3.25; N, 4.89.

(-)-(2*R*)-*N*-Benzyloxycarbonyl-3,3-difluoroalanine [(*R*)-7c]. FC on silica gel (CHCl₃-CH₃OH 9:1) gave a white solid (70%): mp 89-90 °C; $[\alpha]^{23}_{D}$ –2.8 (*c* 0.9, CH₃OH); ¹H NMR (250 MHz, CD₃OD) 4.59 (dd, J_1 = 23.5 and J_2 = 8.3, 1H), 5.11 (s, 2H), 5.21 (br s, 1H), 6.25 (t, J = 54.7, 1H), 7.33 (m, 5H); ¹³C NMR (62.4 MHz, CD₃OD) 58.3 (br t), 68.0, 115.8 (t, ${}^{1}J_{CF}$ = 244.1), 128.9, 129.0, 129.5, 138.0, 158.7, 172.2; ¹⁹F NMR (235 MHz, CD₃OD) -123.3 (ddd, J_{FF} = 281.6, ${}^{1}J_{FH}$ = 54.7 and ${}^{2}J_{FH}$ = 8.3, 1F), -127.6 (ddd, J_{FF} = 281.6, ${}^{1}J_{FH}$ = 54.7 and ${}^{2}J_{FH}$ = 23.5 Hz, 1F); EI-MS 259 [M]⁺.

(-)-(1R)-2,2-Difluoro-1-methyl-O-benzoyl-4-pentenyl(benzyloxycarbonyl)amine

(*R*)-8. To a solution of *N*-Cbz amino alcohol (*R*)-6d (0.53 mmol) in CH₂Cl₂ (2 mL) at room temperature and under argon atmosphere was added dicyclohexylcarbodiimide (1.0 mmol), benzoic acid (0.8 mmol) and a catalytic amount of DMAP. The mixture was stirred for 7 hours and the formation of urea, as a precipitate, is observed. After quenching of the reaction with saturated aqueous NH₄Cl, the organic layer was separated and the aqueous phase extracted with dichloromethane. The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (FC) [*n*-hexanes/ethyl acetate (3:1)] provided *O*-benzoyl amino alcohol (*R*)-8 as a white solid. *Flash* chromatography [*n*-hexane-EtOAc (3:1)] on silica gel (R_f =0.50) gave a white solid (95%): m.p. 38-40 °C; [α]²⁵ _D: -0.7 (*c* 1.1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) 2.57-2.74 (m, 2H), 4.36-4.47 (m, 3H), 5.01 (s, 2H), 5.13-5.20 (m, 3H), 5.67-5.81 (m, 1H), 7.20 (s, 5H), 7.30-7.93 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) 38.9 (t, ² J_{CF} = 25.0), 53.2 (dd, ² J_{1CF} = 29.7, ² J_{2CF} = 23.6), 61.7 (t, ³J = 4.0), 67.3, 121.4, 122.2 (t, ¹ J_{CF} = 246.0), 128.0, 128.2, 128.4, 128.5, 129.4, 129.7, 133.2, 135.9, 155.9, 166.2; ¹⁹ F NMR (235 MHz, CDCl₃) -106.1 (ddt, J_{FF} = 106.0, J_1 = 7.7, J_2 = 2.8, 1F), -107.9 (dq, J_{FF} = 106.0, J = 14.4, 1F). HRMS calc. for C₂₁H₂₁F₂NO₄ 389.1439, found 389.1438.

N1-(4-Methoxyphenyl)-1-chloro-2,2-difluoro-4-penten-1-imine (2j). This compound has been prepared, starting from the corresponding acid, following the protocol described by

Uneyama (see reference 14b). Yellow oil (70 %), B.p. 80 °C (10^{-2} Torr). ¹H NMR (400 MHz, CDCl₃) 3.05-3.87 (m, 2H), 3.72 (s, 3H), 5.19-5.26 (m, 2H), 5.71-5.78 (m, 1H), 6.83 (d, J = 9.0, 2H), 7.04 (d, J = 9.0, 2H); ¹³C NMR (100 MHz, CDCl₃) 39.5 (t, $^2J_{CF} = 25.0$), 55.4 (q), 114.1 (d), 117.1 (t, $^1J_{CF} = 245.0$), 121.4 (t), 123.1 (d), 127.9 (t, $^3J_{CF} = 5.0$), 136.9 (t, $^2J_{CF} = 33.0$), 158.6 (s); ¹⁹ F NMR (235 MHz, CDCl₃) –98.6 (t, $J_{FH} = 16.0, 2F$). HRMS calc. for $C_{12}H_{12}ClF_2NO$ 259.0575, found 259.0580.

General procedure for regioselective *N*-alkylation of (*R*)-8. To a solution of *O*-benzoyl amino alcohol (0.26 mmol) in dry DMF (1.5 mL) at 0 °C was added oil-free NaH (0.52 mmol). After 5 min the suspension was treated with the corresponding alkenyl bromide (5.0 equiv.). The mixture was stirred until total disappearance of the starting material was observed (TLC) and then the solvent was evaporated under reduced pressure. The residue was treated with water, followed by a routine work-up.

(-)-(4*R*)-3-Allyl-4-(1,1-difluoro-3-butenyl)-1,3-oxazolan-2-one (*R*)-9a. After the addition of allyl bromide the mixture was stirred at room temperature for 90 min. *Flash* chromatography [*n*-hexane-EtOAc (10:1)] on silica gel (R_f =0.20) gave a light yellow oil (84%): [α]²⁵ _D: -27.9 (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 2.53-2.65 (m, 2H), 3.60 (dd, J_1 = 15.0, J_2 = 7.5, 1H), 3.97-4.03 (m, 1H), 4.18-4.31 (m, 3H), 5.18-5.24 (m, 4H), 5.68-5.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 37.0 (t, ²J = 24.3), 46.2 (t, ⁴J = 2.0), 57.4 (dd, ² J_{1CF} = 32.0, $^2J_{2CF}$ = 27.0), 62.5 (dd, $^3J_{1CF}$ = 5.8, $^3J_{2CF}$ = 4.0), 119.9, 121.6, 122.5 (t, $^1J_{CF}$ = 246.0), 127.0 (t, $^3J_{CF}$ = 5.8), 130.9, 157.7; ¹⁹F NMR (235 MHz, CDCl₃) -102.7 (m, J_{FF} = 259.7, 1F), -105.3 (m, J_{FF} = 259.7, 1F). HRMS calc. for C₁₀H₁₃F₂NO₂ 217.0914, found 217.0914.

(-)-(4*R*)-3-(3-Butenyl)-4-(1,1-difluoro-3-butenyl)-1,3-oxazolan-2-one (*R*)-9b. After the addition of 1-butenyl bromide the mixture was stirred at room temperature for 7 hours. *Flash* chromatography [*n*-hexane-EtOAc (5:1)] on silica gel (R_F =0.40) gave a yellow oil (45%): [α]²⁵ _D: -7.14 (c 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 2.24-2.38 (m, 2H), 2.52-2.64 (m, 2H), 3.12-3.19 (m, 1H), 3.60-3.67 (m, 1H), 3.96-4.04 (m, 1H), 4.17 (dd, J_1 = 10.0, J_2 = 4.0, 1H), 4.23-4.27 (m, 1H), 5.01-5.09 (m, 2H), 5.18-5.24 (m, 2H), 5.65-5.77 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) 31.4, 36.8 (t, 2J = 24.0), 42.7, 58.0 (dd, ${}^2J_{1CF}$ = 33.0, ${}^2J_{2CF}$ = 28.0), 62.4 (dd, ${}^3J_{1CF}$ = 6.3, ${}^3J_{2CF}$ = 3.5), 117.7, 121.6, 126.9 (t, ${}^3J_{CF}$ = 5.8), 134.4, 157.9; ¹⁹F NMR (282.4)

MHz, CDCl₃) -102.7 (m, $J_{FF} = 260.3$, 1F), -105.4 (m, $J_{FF} = 260.3$, 1F). HRMS calc. for $C_{11}H_{15}F_2NO_2$ 231.1071, found 231.1075.

(-)-(4*R*)-4-(1,1-Difluoro-3-butenyl)-3-(4-pentenyl)-1,3-oxazolan-2-one (*R*)-9c. After the addition of 1-pentenyl bromide the mixture was stirred at room temperature for 7 hours. *Flash* chromatography [*n*-hexane-EtOAc (7:1)] on silica gel (R_f =0.20) gave a yellow oil (90%): [α]²⁵ _D: -2.14 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 1.58-1.70 (m, 2H), 2.01 (dd, J_1 = 14.0, J_2 = 7.5, 2H), 2.52-2.63 (m, 2H), 3.07-3.14 (m, 1H), 3.47-3.55 (m, 1H), 4.00-4.02 (m, 1H), 4.15-4.19 (m, 1H), 4.25-4.30 (m, 1H), 4.92-5.00 (m, 2H), 5.18-5.24 (m, 2H), 5.68-5.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) 25.9, 30.6, 36.8 (t, $^2J_{CF}$ = 24), 43.3, 58.1 (dd, $^2J_{1CF}$ = 32.8, $^2J_{2CF}$ = 27.0), 62.4 (dd, $^3J_{1CF}$ = 6.8, $^3J_{2CF}$ = 4.8), 115.4, 120.0, 122.5 (t, $^1J_{CF}$ = 245.0), 126.9 (t, $^3J_{CF}$ = 5.8), 137.1, 157.8; ¹⁹ F NMR (282.4 MHz, CDCl₃) -102.8 (m, J_{FF} = 261.0, 1F), -105.4 (m, J_{FF} = 261.0, 1F). HRMS calc. for C₁₂H₁₇F₂NO₂ 245.1227, found 245.1220.

Representative procedure for ring closing metathesis of (R)-9. The amount of catalyst $[(PCy_3)_2Cl_2Ru=CHPh]$ necessary in each case was weighed under argon atmosphere and added via cannula to a solution of the corresponding diene (R)-9 in dry CH_2Cl_2 (final concentration of diene was 5 x 10^{-3} M). When addition finished, the vessel was sealed, and the reaction mixture was stirred at room temperature. When reaction finished (TLC), solvent was removed *in vacuo*, and the residue was purified by flash chromatography, affording the expected unsaturated heterocycle (R)-10.

(-)-(9a*R*)-9,9-Difluoro-5,8,9,9a-tetrahydro-1*H*-[1,3]oxazolo [3,4-*a*] azepin-3-one [(*R*)-10a]. The amount of catalyst used was 3 mol %. The mixture of the reaction was stirred for 6 hours at room temperature. *Flash* chromatography [*n*-hexane-EtOAc (2:1)] on silica gel (R_F =0.30) gave a white solid (75%): m.p. 51-53 °C; [α]²⁵ _D= -14.1 (*c* 0.99 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 2.62-2.73 (m, 1H), 2.80-2.90 (m, 1H), 3.54-3.60 (m, 1H), 4.07-4.15 (m, 1H), 4.32-4.38 (m, 3H), 5.54-5.57 (m, 1H), 5.80-5.85 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (CDCl₃): δ = 34.1 (t, ${}^2J_{CF}$ = 26.0), 41.9, 62.0 (dd, ${}^2J_{1CF}$ = 33.0, ${}^2J_{2CF}$ = 31.1), 62.1 (dd, ${}^3J_{1CF}$ = 5.8, ${}^3J_{2CF}$ = 4.0), 120.2 (t, ${}^1J_{CF}$ = 243.0), 122.0 (dd, ${}^3J_{1CF}$ = 7.8, ${}^3J_{2CF}$ = 4.9), 129.1, 157.0; ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -97.8 (dd, J_{FF} = 256.2, J = 21.7, 1F), -109.9 (m double, J_{FF} = 256.2, 1F); HRMS calc. for C₈H₉F₂NO₂ 189.0601, found 189.0608; elemental analyses calcd. for C₈H₉NO₂F₂: C, 50.79, H, 4.76, N, 7.40; found; C, 50.62, H, 4.65, N, 7.48.

(-)-(10aR)-10,10-Difluoro-1,5,6,9,10,10a-hexahydro[1,3]oxazolo[3,4-a]azocin-3-one [(R)-10b]. The amount of catalyst used was 10 mol %. The mixture of the reaction was stirred for 6 hours at room temperature. *Flash* chromatography [n-hexane-EtOAc (2:1)] on silica gel (R_f =0.30) gave a white solid (87%): m.p. 84-86 °C; [α]²⁵ $_{\rm D}$: -40.1 (c 0.80, CHCl₃); 1 H NMR (400 MHz, CDCl₃) 2.24-2.36 (m, 1H), 2.45-2.68 (m, 2H), 2.96-3.05 (m, 2H), 3.80-4.05 (m, 2H), 4.21 (dt, J_1 = 8.8, J_2 = 1.7, 1H), 4.54 (dd, J_1 = 9.2, J_2 = 2.1, 1H), 5.64-5.72 (m, 1H), 5.94 (q, J = 8.6, 1H); 13 C NMR (75.5 MHz, CDCl₃) 27.4, 32.5 (dd, $^2J_{1CF}$ = 27.6, $^2J_{2CF}$ = 24.7), 46.1, 59.1 (dd, $^2J_{1CF}$ = 41.4, $^2J_{2CF}$ = 25.3), 63.1 (d, $^3J_{CF}$ = 6.9), 123.6 (dd, $^3J_{1CF}$ = 10.3, $^3J_{2CF}$ = 1.7), 123.8 (t, $^1J_{CF}$ = 244.0), 133.2, 159.8; 19 F NMR (282.4 MHz, CDCl₃) -101.9 (m, J_{FF} = 252.1, 1F), -111.2 (m, J_{FF} = 252.1, 1F). HRMS calc. for $C_9H_{11}F_2NO_2$ 203.0758, found 203.0749.

NMR Experiments on (-)-(S_S)-3,3,3-Trifluoro-N-(p-methoxyphenyl)-2-iminopropyl-1-(1-naphtyl)sulfoxide [(S)-Z-3b]. We have carried out several NMR experiments on (S)-Z-3b to measure all possible intramolecular Nuclear Overhauser Effects with special attention to those occurring between the aromatic rings.

The experiments were carried out at 195 °K (*ca.* -80 °C) and in two different solvents [methanol (CD₃OD) and methylene chloride (CD₂Cl₂)]. Rotating frame NOE experiments (ROESY) were performed at low temperature since in these conditions the correlation time of the molecular motion in solution is such that the NOE in the laboratory frame (NOESY or NOE difference experiments) is near the null region.

ROESY in methanol (CD_3OD) at low temperature (195 K).

12

- 1) The methylene hydrogens show distinct NOEs with the protons H-2 and H-8 of the naphthalene moiety. The hydrogen resonating at 4.14 ppm (see below) display contacts with the protons Ho of the p-substituted phenyl ring and with the hydrogen H-2 of the naphthalene ring. The hydrogen at 4.41 ppm shows contacts with Ho and with the naphtyl H-8 proton (a very small NOE is also detected with the H-2 proton). These observations strongly suggest that at low temperature the fragment CH₂-S-C₁ is rather rigid and that no fast rotation around CH₂-S or S-C₁ bonds is allowed. Moreover it is possible to assign in the spectrum the configurations pro-S (4.14 ppm) and pro-R (4.41 ppm) to the methylene hydrogens.
- 2) The four hydrogens Ho and Hm of the p-methoxyphenyl ring show NOEs with all protons of the naphtalene ring clearly showing that the two aromatic moieties are rather close in the space.
- 3) The *p*-methoxy substituent displays small but definite NOE contacts with the hydrogens 5, 6 and 7 of the naphtalene ring indicating that the methoxyl group is located relatively near the rim of the unsubstituted ring of the naphtyl residue.

Analysis of the proton spectrum of (S)-Z-**3b** in CD₃OD at low temperature (195 $^{\circ}$ K):

Proton	δ (ppm)	Proton	δ (ppm)
H-2	8.05	Но	6.91
H-3	7.73	Hm	6.88
H-4	8.11		
H-5	8.00	H_R	4.41
H-6	7.60	H_S	4.14
H-7	7.48		
H-8	7.32	OCH ₃	3.80

ROESY in methylene chloride at low temperature (195 K).

In this solvent the pro-*R* and pro-*S* hydrogens of the methylene group resonate very near and their NOEs cannot be evaluated separately. Effects are observed between the CH₂ hydrogens and the hydrogens H-2, H-8 and also H-7 (small) of the naphthalene residue. The four hydrogens of the *p*-substituted phenyl ring and the OCH₃ protons show NOEs with the naphthalene protons similar to that observed in methanol. These data allow to conclude that the molecular conformation is not very different in methanol and in methylene chloride at low temperature.